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Abstract. We investigate non-standard Hamiltonian effects on neutrino oscillations, which are effective ad-
ditional contributions to the vacuum or matter Hamiltonian. Since these effects can enter in either the flavor
or mass basis, we develop an understanding of the difference between these bases representing the under-
lying theoretical model. In particular, the simplest of these effects are classified as “pure” flavor or mass
effects, where the appearance of such a “pure” effect can be quite plausible as a leading non-standard con-
tribution from theoretical models. Compared to earlier studies investigating particular effects, we aim for
a top–down classification of a possible “new physics” signature at future long-baseline neutrino oscillation
precision experiments. We develop a general framework for such effects with two neutrino flavors and dis-
cuss the extension to three neutrino flavors, and we demonstrate the challenges for a neutrino factory to
distinguish the theoretical origin of these effects with a numerical example as well. We find how the precision
measurements of neutrino oscillation parameters can be altered by non-standard effects alone (not includ-
ing non-standard interactions in the creation and detection processes) and that the non-standard effects on
Hamiltonian level can be distinguished from other non-standard effects (such as neutrino decoherence and
decay) if we consider the specific imprint of the effects on the energy spectra of several different oscillation
channels at a neutrino factory.

1 Introduction

Neutrino physics has entered the era of precision meas-
urements of the fundamental neutrino parameters such as
the neutrino mass squared differences and leptonic mixing
parameters, and neutrino oscillations are the most cred-
ible candidate for describing neutrino flavor transitions.
Nevertheless, there might be other sub-leading mechan-
isms participating in the total description of neutrino fla-
vor transitions. Thus, in this paper, we will investigate such
mechanisms on a fundamental level, which will give rise
to non-standard effects on the ordinary framework of neu-
trino oscillations.
In a previous paper [1], we have studied non-standard

effects on probability level based on “damping signatures”,
which were phenomenologically introduced in the neu-
trino oscillation probabilities. However, in this paper, we
will investigate so-called non-standard Hamiltonian ef-
fects, which are effects on the Hamiltonian level rather
than on the probability level. Recently, three different
main categories of non-standard Hamiltonian effects have
been discussed in the literature. These categories are non-
standard interactions (NSI), flavor-changing neutral cur-
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rents (FCNC), and mass-varying neutrinos (MVN or Ma-
VaNs). In addition, other effects which result in effective
additions to the Hamiltonian have been studied, such as
the effects of extra dimensions [2]. Below, we will briefly
review the categories of the effects which can be studied
using this framework.
In general, in many models, neutrino masses come

together with NSI, which means that the evolution of
neutrinos passing through matter is modified by non-
standard potentials due to coherent forward-scattering
of NSI processes να+ f → νβ + f , where α, β = e, µ, τ
and f is a fermion in matter.1 The effective NSI poten-
tials are given by VNSI =

√
2GFNdε̃αβ, where GF is the

Fermi coupling constant, Nd is the down quark number
density, and the ε̃αβ are small parameters describing the
NSI [3]. See, e.g., [4] for a recent review. Furthermore,
matter-enhanced neutrino oscillations in the presence ofZ-
induced FCNC have been studied in the literature [5–7].
See also, e.g., [8, 9] for some earlier contributions. Espe-
cially, NSI and FCNC have been investigated in several
references for many different scenarios such as for so-

1 Note that, in general, the production and detection vertices
could also be modified. However, in this paper, we focus on the
neutrino oscillation probabilities which, in the limit of ultra-
relativistic neutrinos, decouple from the creation and detection
processes.
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lar [10–13],atmospheric [14–18], supernova [19], and other
astrophysical neutrinos as well as for CP violation [20], the
LSND experiment [21], beam experiments [22], and neu-
trino factories [23–28].
The idea of MVN was proposed by Fardon et

al. in [29, 30]. This idea is based on the dark energy of the
Universe being neutrinos which can act as a negative pres-
sure fluid and may be the origin of cosmic acceleration.
Furthermore, several continuation works on MVN have
been performed in the context of scenarios for the Sun and
the solar neutrino deficit [31, 32], but also in various other
contexts [33–45]. In addition, it should be mentioned that
neutrinos with variable masses have also been studied ear-
lier than the idea of MVN [29, 46–49].
While earlier studies have discussed individual theoret-

ical models and their effects on future neutrino oscillation
experiments (bottom–up), our approach will be top–down.
We start from general assumptions to investigate the prop-
erties of non-standard Hamiltonian effects, and later ap-
ply them to specific models and discuss how to identify
individual effects. The goal of this approach is the clas-
sification of a possible “new physics” signature in future
long-baseline neutrino oscillation experiments. Although
it is very likely that such a signature will fit many differ-
ent non-standard models, it has hardly been discussed in
the literature how to distinguish (even qualitatively) differ-
ent theoretical models which could all describe this effect,
and what the methods for that identification could be. For
this purpose, we make rather unspecific assumptions for
the particular type of effect and rather assume that the
theoretical model will predict a leading effect which can
be considered to be of a “simple” form in a specific basis
(“pure” effect), which can be either flavor (or mass) con-
serving or flavor (or mass) violating.
The paper is organized as follows. First, in Sect. 2, we

define non-standard Hamiltonian effects as effective ad-
ditional contributions to the vacuum Hamiltonian similar
to matter effects. The definition is performed for n neu-
trino flavors. Next, in Sect. 3, we specialize our discussion
to two neutrino flavors, where we derive the effective neu-
trino parameters as well as the resonance conditions in
both flavor and mass bases including non-standard Hamil-
tonian effects. We also discuss experimental strategies to
test and identify non-standard Hamiltonian effects at the
example of νe ↔ νµ flavor transitions. Then, in Sect. 4,
we study some aspects of the generalization to the three-
flavor case, whereas in Sect. 5, we give a numerical example
of how non-standard Hamiltonian effects can affect a re-
alistic experimental setup and discuss how to tell non-
standard Hamiltonian effects apart from damping effects.
Finally, we summarize our results and present our conclu-
sions in Sect. 6.

2 Parameterization of non-standard
Hamiltonian effects

In the standard neutrino oscillation framework with n fla-
vors, the Hamiltonian in vacuum is given by

H0 =
1

2E
Udiag(m21,m

2
2, . . . ,m

2
n)U

† , (1)

in the flavor basis, where E is the neutrino energy, U is the
leptonic mixing matrix, andmi is the mass of the ith neu-
trinomass eigenstate. Any Hermitian non-standardHamil-
tonian effect will alter this vacuum Hamiltonian into an
effective Hamiltonian:

Heff =H0+H
′ , (2)

where H ′ is the effective addition to the vacuum Hamilto-
nian.We note that this reminds one of neutrino mixing and
oscillations in matter [8] with H ′ given by a diagonal ma-
trix with the effective matter potentials on the diagonal,
i.e.,

H ′ =Hmat = diag(V, 0, . . . , 0)−
1
√
2
GFNn1n , (3)

where V =
√
2GFNe is the ordinary matter potential, GF

is the Fermi coupling constant, Ne is the electron number
density (resulting from coherent forward-scattering of neu-
trinos),Nn is the nucleon number density, and 1n is the n×
n unit matrix.2 Just as the presence of matter affects the ef-
fective neutrino mixing parameters, the effective neutrino
mixing parameters will be affected by any non-standard
Hamiltonian effect. In the remainder of this text, we will
treat the effective Hamiltonian

Heff =H0+H
′+Hmat , (4)

i.e., we will treat the non-standard effects along with the
matter effects. However, in Sect. 4, we treat only the part
H0+H

′ in order to obtain the parameters of the Hamilto-
nian to which the standard matter effects are then added.
Since standard matter effects are generally taken into ac-
count, H0+H

′ will be mistaken for the vacuum Hamilto-
nianH0 if the non-standard effects are not considered.
Since any part of the effective Hamiltonian that is pro-

portional to the n×n unit matrix only contributes with an
overall phase to the final neutrino state, it will not affect
the neutrino oscillation probabilities. This means that we
may assume H ′ to be traceless and also that we may sub-
tract tr(H)/n from the effective Hamiltonian to make it
traceless. Any traceless Hermitian n×n matrix A may be
written as

A=
N∑

i=1

ciλi , (5)

where the ci are real numbers, the λi are the generators of
the SU(n) Lie algebra (i.e., A is an element of the Lie al-

gebra), andN = n2−1 is the number of generators. Hence,
clearly, any non-standard Hamiltonian effect H ′ is param-
eterized by the n2−1 numbers ci. In summary, we choose

2 If sterile neutrinos are present, then there is no interaction
between the sterile neutrinos and the matter through which
they propagate. Thus, the 1n term is replaced by a projection
operator on the active neutrino states.
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the coefficients of the generators of the SU(n) Lie algebra
to parameterize any non-standard Hamiltonian effect.
Furthermore, in any basis (e.g., flavor or mass basis), we

may introduce SU(n) generators λi such that n(n−1)/2
generators are off-diagonal with only two real non-zero en-
tries, n(n−1)/2 generators are off-diagonal with only two
imaginary non-zero entries, and n−1 generators are diag-
onal with real entries. For example, in the case of n= 2, we
have the Pauli matrices

λ1 = σ1 =

(
0 1
1 0

)
, λ2 = σ2 =

(
0 −i
i 0

)
,

λ3 = σ3 =

(
1 0
0 −1

)
. (6)

We will denote the set of generators which are of the form
λi in the flavor basis by ρi and the set of generators which
are of this form in the mass basis by τi. Obviously, in the
flavor basis, we have the relations

ρi = λi and τi = UλiU
† , (7)

where, in the case of two neutrino flavors,

U =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)

is the two-flavor leptonic mixing matrix and θ is the corres-
ponding mixing angle (when treating the three-flavor case,
we will use the standard parameterization of the leptonic
mixing with three mixing angles θ12, θ23, θ13, and one CP
violating phase δCP ). This implies that ρi and τi would be
equal if there were no mixing in the leptonic sector. Fur-
thermore, it is obvious that the matrices ρi can be written
as linear combinations of the matrices τi and vice versa.
Therefore, there is, in principle, no difference between ef-
fects added in flavor or mass basis if one allows for the most
general form of the non-standard contribution.
We now define any non-standard effect as a “pure” fla-

vor or mass effect if the corresponding effective contribu-
tion to the Hamiltonian is given by

H ′ = cρi or H
′ = cτi (i fixed) , (8)

respectively, where c ∈ R. This means that we restrict the
“pure” effects to be of very specific types, where the ac-
tual forms are very simple in a given basis.3 Given the
possible theoretical origin, this approach is quite plausible
if one assumes that the underlying theoretical model will
produce one leading flavor (or mass) changing or conserv-
ing effect. Generally, the parameter c can depend on many

3 Because of our choice to use the Pauli matrices, a “pure”
effect corresponds to the interaction of two flavor or mass eigen-
states. This is also the reason for choosing to work with the
Pauli matrices. In addition, it is also interesting to keep the real
and complex parts of the off-diagonal entries separate (i.e., not
working with the complex matrix elements directly, but rather
a set of real parameters) in order to investigate the possibilities
of probing CP violation effects.

different quantities, e.g., the matter density or the neu-
trino energy. In particular, the dependence on the neutrino
energy (“spectral dependence”) may allow for the unam-
biguous identification, or, in the case of mass-varying neu-
trinos, the matter density dependence may indicate this
type of effect. However, any approach investigating such
dependencies has to use specific models, and the actual
representation by Nature may easily be overseen. There-
fore, we do not require this information in this study and
rather investigate the generic impact of effects in the fla-
vor or mass basis. In addition, we note that the matter
density or energy dependence of the non-standard effects
should be very weak for a given terrestrial experiment
with a specific matter density profile. Only for effects mo-
tivated by MVN, i.e., mass effects, we will use the same
energy dependence as for the masses themselves for nu-
merical simulations. In general, if a large span of ener-
gies is available, one should of course also try to distin-
guish different specific models through their different en-
ergy dependencies.
This choice of pure effects implies that only one of the

generators of the Lie algebra is present, since a general lin-
ear combination, such as (5), can always be interpreted in
both bases. Thus, we define a flavor or mass conserving
(violating) effect as any effect where the effective contri-
bution to the Hamiltonian is diagonal (off-diagonal) in the
corresponding basis.4We note that a pure flavor (mass) vi-
olating effect corresponds to some interaction between two
flavor (mass) eigenstates. For example, the SU(2) genera-
tors ρ1 and ρ2 correspond to flavor-violating (or changing)
effects, whereas ρ3 corresponds to flavor-conserving effects.
In summary, if we detect an arbitrary non-standard effect,
it is the simple form in flavor or mass basis which makes
it a flavor or mass effect by our definition. This approach
can be justified by the fact that the simplest models for
non-standard effects from the underlying theory corres-
pond to specific patterns for the effective addition to the
Hamiltonian. Therefore, our definition of a “pure” effect is
a conceptually new one, and it refers to a class of effects
which can be interpreted in different ways. However, since
simplicity is a basic concept in physics, this concept allows
the choice of the most “natural” non-standard effects for
further testing.
The case of non-standard Hamiltonian effects on three-

flavor neutrino oscillations, i.e., the case of n= 3, is quite
similar to the one described above for the two-flavor case.
Instead of the Pauli matrices, which are a basis of the
SU(2) Lie algebra, we now have to use the eight Gell-Mann
matrices, which span the SU(3) Lie algebra. Out of the
Gell-Mann matrices, three are off-diagonal with two real
entries, three are off-diagonal with two imaginary entries,
and two are diagonal with real entries. Even though the
principle of the three-flavor case is the same as that of the
two-flavor case, it introduces manymore parameters (more
leptonic mixing angles, the complex phase in the leptonic
mixing matrix, the extra mass squared difference, and the

4 Strictly speaking, our definition distinguishes (in two fla-
vors) off-diagonal additions proportional to λ1 (real) or λ2
(complex).
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extra degrees of freedom for the non-standard effects), and
therefore, turns out to be much more cumbersome to han-
dle than the two-flavor case. In the following, we will there-
fore start by treating the two-flavor case in some detail and
then continue by studying the similarities and differences
when approaching the full three-flavor case.
As far as the classification of current models in our

notation is concerned, NSI and FCNC will be flavor ef-
fects, whereas MVN will produce mass effects. In general,
NSI can be of two types: flavor changing (FC) and non-
universal (NU) [4]. The off-diagonal elements of the ef-
fective NSI potential εαβ , where α �= β, correspond to FC,
whereas the differences in the diagonal elements εαα corres-
pond to NU. In addition, FCNC are flavor-violating effects
andMVN can be mass conserving. In principle, for our pur-
poses, there is no difference between FC NSI and FCNC.

3 Non-standard Hamiltonian effects
in the two-flavor limit

In this section, we study the general implications of non-
standard Hamiltonian effects in the two-flavor limit. We
discuss the effective parameter mapping including non-
standard effects, and then we apply it to a two-flavor limit
as an example.

3.1 Parameter mapping in two flavors

In Appendix A, we describe the general formalism of the
two-flavor scenario, which can be used to obtain the results
in this section. First, we discuss effects given in the fla-
vor basis, which are effects expanded in ρi [cf. (7)]. In this
case, flavor-conserving effects will be contributions to the
total Hamiltonian on the form H ′ = F3ρ3, where F3 ∈ R,
whereas flavor-violating effects will be contributions of the
form H ′ = F1ρ1+F2ρ2, where Fi ∈ R. In the flavor basis,
the new effective parameters are given by

∆m̃2 =∆m2ξ , (9)

sin2(2θ̃) =

[
4EF1
∆m2

+sin(2θ)
]2
+
(
4EF2
∆m2

)2

ξ2
, (10)

where

ξ =

{[
4EF1
∆m2

+sin(2θ)

]2
+

(
4EF2
∆m2

)2

+

[
2V E

∆m2
+
4EF3
∆m2

− cos(2θ)

]2}1/2
(11)

is the normalized length of the Hamiltonian vector (see Ap-
pendix A), ∆m̃2 is the effective mass squared difference in
the flavor basis, and θ̃ is the effective mixing angle in the
flavor basis.5 In addition, the resonance condition is found

5 Note that F2 may also change the effective Majorana phase.

to be

2V E

∆m2
+
4EF3
∆m2

= cos(2θ) , (12)

which is clearly nothing but a somewhat modified version
of the Mikheyev–Smirnov–Wolfenstein (MSW) resonance
condition [8, 50, 51]. From the resonance condition in (12),
it is easy to observe that the resonance is present for some
energy E if and only if

sgn(∆m2)sgn(V )sgn(1+2F3/V ) = sgn[cos(2θ)] ,
(13)

where sgn(∆m2) is dependent on the mass hierarchy,
sgn(V ) is dependent on if we are studying neutrinos or an-
tineutrinos, and sgn(1+2F3/V ) is dependent on the ratio
between F3 and the matter potential V [sgn(1+2F3/V )
being equal to −1 if and only if F3 has a magnitude larger
than |V/2| and is of opposite sign to V ]. Note that if there
are flavor-violating contributions added to the Hamilto-
nian, then these do not change the resonance condition.
The sign of cos(2θ) can be made positive by reordering the
mass eigenstates in the case of two neutrino flavors. How-
ever, we keep this term as it is, since this is not possible in
the case of three neutrino flavors. This resonance condition
can be easily understood, since the effective contribution
to the Hamiltonian from any flavor-violating effect will be
parallel to the H3 = 0 plane, i.e., these contributions are
off-diagonal.
If we choose to describe the non-standard addition to

the Hamiltonian in the mass eigenstate basis, then we find
that the mixing parameters are given by

∆m̃2 =∆m2ξ , (14)

sin2(2θ̃) =
[
4EM1
∆m2

cos(2θ)+
(
1− 4EM3

∆m2

)
sin(2θ)

]2
+
(
4EM2
∆m2

)2

ξ2
,

(15)

where

ξ =

{[
2V E

∆m2
sin(2θ)+

4EM1
∆m2

]2
+

(
4EM2
∆m2

)2

+

[
2V E

∆m2
cos(2θ)+

4EM3
∆m2

−1

]2}1/2
, (16)

and the resonance condition becomes

2V E

∆m2
+
4EM1
∆m2

sin(2θ)+
4EM3
∆m2

cos(2θ) = cos(2θ) .

(17)

Note that both mass conserving effects and mass violating
effects enter into the resonance condition, whereas only the
flavor-conserving effects entered in the corresponding ex-
pression in the flavor basis cf., (12). This is due to the fact
that the changes of the Hamiltonian vector from such ef-
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fects are not parallel to the H3 = 0 plane (in flavor basis,
see Appendix A), i.e., both of these effects affect the diag-
onal terms of the total Hamiltonian. However,M2 does not
enter into the resonance condition, since σ2 = τ2, i.e., the
change of the Hamiltonian is off-diagonal also in the flavor
basis.

3.2 Interpretation of experiments
in the two-flavor limit

Since a general analytic discussion of three-flavor neu-
trino oscillations including non-standard Hamiltonian ef-
fects would be very complicated, we focus on two neutrino
flavors in this section. This approach can be justified if one
assumes that the other contributions are exactly known
or the two-flavor probabilities dominate. Of course, for
short-term applications, small non-standard effects might
be confused with other small effects such as sin2(2θ13) ef-
fects [27]. Thus, a comprehensive quantitative discussion
would be very complicated at present.
In three-flavor neutrino oscillations, we can construct

several interesting two-flavor limits of the probabilities Pαβ
including non-standard effects related to two-flavor neu-
trino oscillations (see, e.g., [52]):

Pee −→
∆m221→0

1− sin2(2θ̃13) sin
2

(
∆m̃231L

4E

)
, (18)

Pee −→
θ13→0

1− sin2(2θ̃12) sin
2

(
∆m̃221L

4E

)
, (19)

Pµe −→
∆m221→0

sin2(2θ̃13) sin
2

(
∆m̃231L

4E

)
sin2(θ23) ,

(20)

Pµµ −→
∆m221→0, θ13→0

1− sin2(2θ̃23) sin
2

(
∆m̃231L

4E

)
.

(21)

Note that all of these probabilities also contain the stan-
dard matter effects except for Pµµ. In general, the SU(3)

Fig. 1. The two-flavor appearance probability Pαβ as a function of energy and the flavor-conserving/violating fraction
fi ≡ Fi/V (normalized relative to matter effects). For the values of the neutrino parameters, we have used θ = 0.16 � 9.2

◦,
∆m2 = 0.0025 eV2, L= 3000 km, ρ= 3.5 g/cm3, neutrinos only, ∆m2 > 0, and fi > 0

generators (the Gell-Mann matrices) will give the degrees
of freedom for non-standard Hamiltonian effects with three
flavors. However, when studying the effective two-flavor
neutrino oscillations, we only use the Gell-Mann matrices
which are the equivalents of the Pauli matrices in the two-
flavor sector that is studied. In addition, one can create
two-flavor limits for oscillations into sterile neutrinos, such
as in [2]. In the following, we will focus on small mixing
and the case of (20) for illustration. We discuss the large
mixing case in Appendix B. In addition, see Appendix C
for subtleties with the definitions of the effective two-flavor
scenarios.
For small mixing, such as for (20), we show in Fig. 1

the neutrino oscillation appearance probabilityPαβ for two
flavors with small mixing, where the effects of the Fi are
parameterized relative to the matter effects (i.e., “1” on
the vertical axis corresponds to an effect with Fi = V and
“0” to no non-standard effects). In this figure, many of
the following analytic observations are visualized. The res-
onance condition in (12) can always be fulfilled for the
matter resonance (F3 = 0) by an appropriate choice of
energy, baseline, neutrinos or antineutrinos, and oscilla-
tion channel. Obviously, we can read off from (10) that
at the resonance sin2(2θ̃)→ 1, where the matter reson-
ance condition can be influenced by F3 according to (12).
Therefore, the magnitude of sin2(2θ̃) at the resonance (but
not necessarily Pαβ) is independent of F1, F2, and F3 by
definition. However, F3 can shift the position of the res-
onance (such as in energy space). If we choose an energy
far above the resonance energy and Fi/V � 1 (i= 1, 2, 3),
then we have

sin2(2θ̃)→

[
4EF1
∆m2

+sin(2θ)
]2
+
(
4EF2
∆m2

)2

[
2V E
∆m2

+ 4EF3
∆m2

−1
]2 . (22)

This means that F1 and F2 can, for large enough
energies, enhance a flavor transition, i.e., they increase
the oscillation amplitude. In principle, one could distin-
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guish F1 from F2 by a measurement at two different en-
ergies, because the mixed term from the square in the
numerator of (22) has a linear (instead of quadratic)
energy dependence. In practice, such a discrimination
should be very hard. In addition, the quantity F3 can
play the same role as the matter potential V , i.e., it
can change the flavor transition for large energies. It is
also obvious from (10) and (11) that F3 can affect the
matter resonance energy and that it is directly corre-
lated with the matter potential V , i.e., one cannot es-
tablish effects more precisely than the matter density
uncertainty.
In Sect. 3.1, we have also discussed mass effects, such as

coming from MVN. Since a pure M1 or M3 effect trans-
lates into a combination of F1 and F3 cf., (A.6), we ex-
pect to find a mixture of F1 and F3 effects, i.e., both F1
and F3 effects have to be present. Thus, if we assume
that there is only one dominating “pure” non-standard
contribution (F1, F2, F3, M1, M2, or M3), then this sim-
ultaneous presence points toward a mass effect. Clearly,
an M2 effect, on the other hand, cannot be distinguished
from an F2 effect; cf. (A.6). A different property of M3,
which is not so obvious from Sect. 3.1, but very obvious al-
ready from (1), (2), and (7) is this: since M3 is diagonal
in the mass basis, it corresponds to an energy dependent
shift of the vacuum mass squared difference. As a conse-
quence, in vacuum, the effective mixing angle is not modi-
fied by M3; cf. (15). Thus, the oscillation amplitudes are
not modified byM3, but the oscillation pattern shifts (con-
trary to F3 effects, where also the amplitude changes). In
this case, the resonance condition becomes meaningless
and the amplitude becomes sin2(2θ̃) = sin2(2θ). Note that
a direct test using one experiment only makes it hard to
identify mass effects uniquely if they are introduced with
the same energy dependence as the vacuum masses (be-
cause they can be rotated away by a different set of neu-
trino oscillation parameters). Thus, other methods might
be preferable, such as modified MSW transitions in the
Sun [31, 32] or reactor experiments comparing air and mat-
ter oscillations [53]).
Another class of effects has been discussed by Blennow

et al. in [1]. In this study, so-called “damping effects” could
describe modifications on the probability level instead of
the Hamiltonian level (such as neutrino decay, absorption,
wave packet decoherence, oscillations into sterile neutri-
nos, quantum decoherence, averaging, etc.). It is obvious
from (3) in [1] that these damping effects do not alter the
oscillation frequency, while we can read off from (9) and
(11) that it is a general feature of non-standard Hamil-
tonian effects that the oscillation frequency is changed.
However, for damping effects, the oscillation amplitude can
be damped either by a damping of the overall probabil-
ity (“decay-like damping”) or by the oscillating terms only
(“decoherence-like damping”). In the first case, the total
probability of finding a neutrino in any neutrino state is
damped for all energies, whereas in the second case it is
constantly equal to one while the individual neutrino oscil-
lation probabilities are damped in the oscillation maxima
and enhanced in the oscillation minima. Since all (small)
effects one could imagine in quantum field theory, involving

the modification of fundamental interactions or propaga-
tions, can be described by either a coherent or incoher-
ent addition of amplitudes, one can expect that the two
classes of Hamiltonian and probability (damping) effects
can cover all possible effects. However, in practice, po-
tential energy, environment, and explicit time dependen-
cies (such as from a matter potential) can make life more
complicated.

4 Three-flavor effects

As was stated in the Sect. 2, the general three-flavor case
is quite complicated. However, if we assume that the non-
standard effects are small, then we can use perturbation
theory to derive expressions for the change in the neutrino
oscillation parameters. For example, the elements of the ef-
fective mixing matrix are given by

Ũαi = 〈να|ν̃i〉 , (23)

where |ν̃i〉 is the eigenstate of the full Hamiltonian. To first
order in perturbation theory, we have

|ν̃i〉= |νi〉+
∑

j �=i

〈νj |H ′| νi〉

Ei−Ej
|νj〉 	 |νi〉+2E

∑

j �=i

H ′ji
∆m2ji

|νj〉 ,

(24)

and thus we find

Ũαi 	 Uαi+2E
∑

j �=i

H ′ji

∆m2ji
Uαj , (25)

or, in terms of the non-standard addition given in the flavor
basis,

Ũαi 	 Uαi+2E
∑

j �=i

∑

β,γ

UβjU
∗
γiH

′
βγ

∆m2ji
Uαj . (26)

We note that this approach is valid only if |2EH ′ij/∆m
2
ji|�

1. If this is not valid, then we have to use degenerate pertur-
bation theory in order to obtain valid results.
It was discussed in [26, 27], that if θ13 is small enough,

then possible NSI in the creation, propagation, and detec-
tion processes may mimic the effects of a larger θ13 (this
can also be the case for other effects which are not usually
treated along with neutrino oscillations, such as damping
effects [1]). Here, we consider only the propagation effects
separately and consider how this alone could affect the de-
termination of θ13. The reason for doing so is that, while
NSI can also affect the creation and detection processes,
other non-standard effects, e.g., MVN, may not. With the
perturbation theory approach described above, this be-
comes very transparent and is probably one of the most
interesting applications of non-standard effects. In any ex-
perimental setup, the value of the mixing angle θ13 is deter-
mined by the modulus of the element Ue3 of the neutrino
mixing matrix U . If we include non-standard effects, then
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the effective counterpart of this element is given by

Ũe3 	 Ue3+
2E

∆m231

(
1+αs212

) (
s23H

′
eµ+ c23H

′
eτ

)

+α
2E

∆m231
s12c12

×

[
c223H

′
µτ − s

2
23H

′
τµ+

1

2
sin(2θ23)

(
H ′µµ−H

′
ττ

)]
,

(27)

where we have made a series expansion to first order in α=
∆m221/∆m

2
31 	 0.03 and disregarded terms of second order

in bothH ′ and θ13.
If Ue3 is smaller than or of equal size to the other terms

in this expression, then the θ13 determined by an experi-
ment will not be the actual θ13 unless the non-standard
effects are taken into account. It is worth to notice that
if θ23 = 45

◦, then c23 = s23 and only the imaginary part
of H ′µτ = (H

′
τµ)
∗ will enter into the expression for Ũe3,

indicating that if the leading term is the one containing
H ′µτ , then the effective CP violating phase will be ±90

◦.
Another interesting observation is that even if there are
no non-standard effects, there is a term proportional to
∆V ≡H ′µµ−H

′
ττ in this expression. Because of the differ-

ent matter potentials for νµ and ντ due to loop level effects,
this quantity will be of the order ∆V 	 10−5V .
In Fig. 2, we plot the possible range of |Ũe3| as a func-

tion of εmaxV E, whereH
′
αβ = εαβV , V is the matter poten-

tial, and |εαβ |< εmax. For comparison, a neutrino factory
with a neutrino energy ofE = 50GeV and a matter density
of 3 g/cm3 will have V E 	 6×10−15MeV2 and the pos-
ition at which we need to consider the possible range of

Fig. 2. The range of pos-
sible |Ũe3| as a function
of εmaxV E. The plots are
arranged so that the left
panels correspond to θ13 =
10◦ and the right panels
to θ13 = 0, while the lower
panels correspond to a non-
standard effect with εeτ �=
0 and the upper panels to
a non-standard effect with
εττ �= 0. The qualitative
behavior for other values of
θ13 is similar to the behav-
ior for θ = 10◦. (Note the
different scales on the ver-
tical axes)

|Ũe3| then depends on the bounds on the non-standard pa-
rameters εαβ . In general, the bounds for εαβ depend on the
type of non-standard effect and the types of interactions
that are considered. In the case of NSI, it is common to
write the non-standard interaction parameters as

εαβ =
∑

f

εfαβ
Nf

Ne
, (28)

where we sum over different types of fermions, εfαβ depends
on the non-standard interaction with the fermion f , and
Nf is the number density of the fermion f . In addition, ε

f
αβ

is often split into εfαβ = ε
fL
αβ+ ε

fR
αβ , where L and R denote

the projectors used in the fermion factor of the effective
non-standard Lagrangian density, i.e.,

Leff =−2
√
2GF

∑

f

∑

P=L,R

εfPαβ (ν̄αγρLνβ)(f̄γ
ρPf) .

(29)

Recent bounds for εfPαβ can be found in [54] for electron neu-

trino interactions with electrons (i.e., εePeβ ) and in [55] for
interactions with first generation standardmodel fermions.
As an example, the bounds from [54] for the εeτ (which is
considered in Fig. 2) are

−0.90< εeLeτ < 0.88 and −0.45< εeReτ < 0.44 ,
(30)

respectively. This means that the bounds, especially in this
sector, are weak, which we will use in the next section.
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From Fig. 2, we can deduce that the off-diagonal εeτ terms
have a larger potential of altering the value of |Ũe3| than
the diagonal εττ terms; the maximal value can even exceed
1/
√
2, corresponding to θ̃13 = 45

◦. In addition, it is possible
to suppress the effective θ13 to zero if introducing non-
standard effects. It follows that a relatively large θ13 signal,
bounded only by the size of the non-standard effects, can
be induced or that a large θ13 signal can be suppressed by
non-standard effects. Note that the effects quickly disap-
pear at low energies, e.g., in reactor experiments. In order
to tell a genuine θ13 signal apart from a signal induced
by non-standard interactions, it is necessary to study the
actual distortion of the energy spectrum induced by the
neutrino oscillations.

5 A numerical example: neutrino factory
for large sin2(2θ13)

This section is not supposed to be a complete study of non-
standard Hamiltonian effects, but to demonstrate some
of the properties qualitatively discussed in the last sec-
tions in a complete numerical simulation of a possible
future experiment using the exact three-flavor probabil-
ities. Therefore, we have to make a number of assump-
tions. We use a modified version of the GLoBES soft-
ware [56] to include non-standard effects. As a future high-
precision instrument, we choose the neutrino factory ex-
periment setup from [57, 58] with L = 3000 km, a 50 kt
magnetized iron calorimeter detector, 1.06×1021 useful
muon decays per year, and four years of running time in
each polarity.6 This experiment uses muon neutrino dis-
appearance and electron to muon neutrino appearance as
oscillation channels for both neutrinos and antineutrinos
(in the muon and antimuon operation modes combined).
For the neutrino oscillation parameters, we use sin2 2θ12 =
0.83, sin2 2θ23 = 1, ∆m

2
21 = 8.2×10

−5 eV2, and ∆m231 =
2.5×10−3 eV2 [59–62], as well as making the assumption
of a 5% external measurement for ∆m221 and θ12 [60]
and including matter density uncertainties of the order
of 5% [63, 64]. In order to test precision measurements of
the non-standard effects, we use sin2(2θ13) = 0.1, which is
close to the CHOOZ upper bound7 [67]; also, we assume
a normal mass hierarchy and δCP = 0. For simplicity, we

6 Compared to [57], we use a 2.5% systematic normalization
error for all channels as in [58].
7 In general, a large sin2(2θ13) will imply a large signal in
the appearance channel. However, non-zero effective sin2(2θ13)

could arise even if sin2(2θ13) = 0; cf.Fig. 2. For effects which

are diagonal in the flavor basis, a large sin2(2θ13) would be
preferred in order to make an observation of the non-standard
effect. We have used a large sin2(2θ13) as an example, since
one may argue that the finding of new effects at present ex-
periments (such as MINOS) may lead to a good reason for
constructing a neutrino factory. One should also observe that,
in principle, it would be possible to find non-standard effects at,
e.g., MINOS [65, 66]. However, the precision of a neutrino fac-
tory would be more sensitive to small effects, and, thus, be more
useful for distinguishing between effects.

do not take the sgn(∆m231)-degeneracy [68] into account,
but we include the intrinsic (θ13, δCP)-degeneracy [69],
whereas the octant degeneracy does not appear for max-
imal mixing [70]. Note that we do not include external
bounds on the non-standard physics and sin2(2θ13), which,
for instance, means that we allow for “fake” solutions
of sin2(2θ13) above the CHOOZ bound. This assumption
is plausible, since, depending on the effect, the CHOOZ
bound may have been affected by the non-standard effect
as well.

5.1 Test model

Since we choose sin2(2θ13) to be large, let us first of all
focus on the appearance channel of νe oscillating into νµ
(or ν̄e oscillating into ν̄µ). Expanding in small sin

2(2θ13)
and α≡∆m221/∆m

2
31, we have for α→ 0 (which should be

a good approximation for sin2(2θ13)� α2 	 0.001) [71–73]

Peµ ∼ sin
2 2θ13 sin

2 θ23
sin2[(1− Â)∆]

(1− Â)2
, (31)

where ∆ ≡ ∆m231L/(4E) and Â ≡ ±2
√
2GFneE/∆m

2
31.

Similarly, Peτ is described by this equation with sin
2 θ23 re-

placed by cos2 θ23. This means that we may be effectively
dealing with the two-flavor limits described in Sect. 3, de-
pending on the degree that the non-standard effects are
different for the µ and τ flavors (cf. Appendix C).
Using the parameterization in (5) and (6) applied to the

1–3-sector, we therefore adopt the following Hamiltonian:

Heff =
1

2E
U

⎛

⎝
M̃3 0 M̃1− iM̃2
0 ∆m221 0

M̃1+ iM̃2 0 ∆m231− M̃3

⎞

⎠U†

+

⎛

⎝
V +F3 0F1− iF2
0 0 0

F1+ iF20 −F3

⎞

⎠ . (32)

In this model, M1 and M2 correspond to the CP con-
serving and CP violating parts of a mass-changing effect,
whereas M3 is a mass conserving effect. In addition, F1
and F2 are the CP conserving and CP violating parts of
a flavor-changing effect, whereas F3 is a flavor-conserving
effect. As motivated before, it is plausible to assume that
one of these non-standard effects may be dominating the
other ones, because many models predict such a dominat-
ing component and the experimental constraints on some
quantities are rather strong. In addition, (32) implies that
the effects are mainly present in the 1–3-sector, which can
be motivated by rather weak experimental bounds on the
ντ -sector. For example, the bounds on the matrix element
H ′eτ are rather weak in the case of NSI, making it viable
that this term is dominating the NSI Hamiltonian. In this
case, we obtain

H ′ = V

⎛

⎝
0 0 εeτ
0 0 0
ε∗eτ 0 0

⎞

⎠⇔ F1 = VRe(εeτ ),

F2 = V Im(εeτ ) . (33)
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Thus, we have a flavor-violating effect with F1 representing
the CP conserving part of the NSI, and F2 representing the
CP violating part of the NSI. The form of the mass effects
has been chosen to match the expected energy dependence
of MVN in order to discuss effects with realistic spectral
(energy) dependencies.
Note that the parameterization in (32) does not ex-

actly correspond to the two-flavor limit even for α→ 0,
since there are some non-trivial mixing effects in the 2–3-
sector as described in Appendix C. This parameterization
is also obviously not the whole story in the three-flavor sce-
nario. For instance, we assume the same sign for effects
on neutrinos and antineutrinos, which may, depending on
the model, not apply in general. However, we will demon-
strate some of the characteristics from Sect. 3.2 with this
approach. In addition, note that we have now adopted
a specific energy dependence of the flavor and mass effects,
where the definition of the energy dependence in the M̃
is slightly different from the one in the M in Sect. 2; i.e.,
M ≡ M̃/(2E). In this case, the mass effects could be com-
ing from MVN changing the mass eigenstates, whereas the
flavor effects correspond to some NSI approximately con-
stant in the considered energy range. We will quantify the
size of the Fi and M̃i in terms of the normalized quanti-
ties fi ≡ Fi/V (for ρ= 3.5 g/cm3) and µi ≡ M̃i/∆m231 (for
∆m231 = 2.5×10

−3 eV2). This quantification makes sense,
since it is obvious from (32) that the effect of these quan-
tities will have to be compared with the order of V and
∆m231, respectively. Note that f1− if2 = ε

e
eτ from Sect. 4,

which means that it will be interesting to compare the
precision of f1 and f2 to the current bounds for εeτ . Fur-
thermore, note that the mass effects can be simply rotated
away by a different choice of the mixing matrix and the
mass squared differences, because of the same energy de-
pendence in this example. However, since we assume the
solar parameters to be measured externally, we will ob-
serve that constraints to the M̃i can be derived. Such an
external measurement with an environment dependence
similar to the neutrino factory comes from KamLAND,
which turns out to be very consistent with the ones from
solar neutrino experiments. Since most non-standard ef-
fects in oscillations are dependent on the matter density
(such as MVNs with acceleron couplings to matter fields,
or non-standard flavor-changing matter effects generated
by higher-dimensional operators), it is plausible to assume
that strong constraints hold for the solar sector because of
the very different environments/densities within the Sun
and the Earth.

5.2 Identifying specific pure effects

If we discover a non-standard effect, it will be an interest-
ing question how easily it can be identified. Assuming one
dominating effect of the mass or flavor type, which we have
introduced as “pure effect”, we want to know how well it
can be distinguished from other such effects of a different
qualitative nature. Therefore, in Fig. 3, we show the corre-
lation between simulated and fit pure effects. For this fig-
ure, we simulate a pure effect (column) and fit it with a dif-

Fig. 3. Correlation between simulated models (columns) and
fit models (rows). The areas of the disks represent the discov-
ery potentials of the simulated “pure” effects (parameterized in
terms of fi or µi) given that a different pure effect (fit model)
is allowed (minimum value of a deviation from zero necessary
in either direction for a 3σ discovery). Therefore, the larger the
disk, the more difficult it will be to distinguish a pure effect
from another one. Note that we use cutoffs of |fi| � 0.3 and
|µi|� 0.5 (largest gray disks), since some models cannot even be
distinguished for much larger values. The areas of the rest of the
disks are normalized with respect to these cutoffs for simulated
flavor and mass effects

ferent one (row), i.e., we marginalize over the respective fi
or µi. The areas of the disks are proportional to the min-
imum simulated value necessary to establish a 3σ effect,
where we have chosen a cutoff of |fi| � 0.3 and |µi| � 0.5
(corresponding to the largest gray disks).8 This means that
the size of the disks measures the correlation between two
pure effects and the ability to discriminate those.
One can easily make a number of qualitative observa-

tions from Sect. 3.2 quantitative. First, it is hard to dis-
criminate between F1 and F2 (CP conserving and CP vio-
lating flavor-changing effects), since these effects are quali-
tatively similar and highly correlated with θ13 (as we have
tested). However, if Nature implemented a flavor-changing
F1 or F2 effect, then one could easily establish it against F3
and the pure mass effects. In general, note that a discrim-
ination between flavor and mass effects is rather easy be-
cause of their different spectral dependence in this example
(such as between F2 and M̃2). The difference to F3 can
be explained by the different flavor-conserving nature of
F3. The results look somewhat different for the F3-column:
because of the correlation with ρ and all of the neutrino
oscillation parameters (see below), it will be hard to estab-
lish this effect. For the simulated mass effects, the scale is

8 Note that, for instance, the gray disks for f1 and f2 corres-
pond to the order of magnitude of the upper bounds in (30),
which means that testing considerably larger effects does not
make sense.
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different, i.e., one cannot directly compare the M̃ -columns
with the F -columns. Again, the mass effects can be distin-
guished from the pure flavor effects to some extent. How-
ever, it is quite impossible to establish a mass effect against
another one, since they can easily be simulated by a differ-
ent set of mass squared differences and mixing parameters
with the same energy dependence. The only reasonwhy the
pure mass effects can be established in this example at all
is that we have imposed external constraints on the solar
parameters as motivated above.

5.3 Discovery of non-standard physics
and potential for improvements

A very important issue of any pure non-standard effect is
its evidence compared to the standard three-flavor oscilla-
tion scenario. Therefore, in Table 1, we show the discovery
reaches for the parameters from (32) against the standard
three-flavor neutrino oscillation scenario. This means that
the pure effects shown are simulated and the standard
three-flavor neutrino oscillation parameters are marginal-

Table 1. Discovery limits for the parameters in (32) as parameterized fi = Fi/V and
µi = M̃i/∆m

2
31 from the neutrino factory simulation (including correlations)

Quantity Lower limit (1σ) Upper limit (1σ) Lower limit (3σ) Upper limit (3σ)

f1 −0.008 0.008 −0.025 0.026
f2 −0.003 0.003 −0.008 0.008
f3 −0.016 0.016 −0.049 0.082
µ1 −0.176 0.118 −0.218 0.211
µ2 −0.105 0.126 −0.181 0.212
µ3 −0.015 0.015 −0.044 0.090

Fig. 4. Main impact factors (impact
greater than 5%) for the test of specific
simulated models (captions) against
standard three-flavor neutrino oscilla-
tions (3σ measurement). The neutrino
oscillation parameters refer to corre-
lations with the respective parameter,
“Syst.” refers to systematics, and “ρ”
refers to the matter density uncertainty.
The impact factors are defined as in [57]
as relative improvement when the re-
spective quantity is fixed (correlations)
or systematics is switched off

ized over. Comparing the precisions of f1 and f2 with the
numbers in (30) is impressive. However, these discovery
reaches depend on sin2(2θ13) (and δCP) and we have as-
sumed a very large sin2(2θ13) = 0.1 (and δCP = 0). Note
that the reach in f2 is actually better than the one in f1,
which is different from what is found in the two-flavor limit
in Sect. 3.2. The reasons are the mixing effects in the 2–3-
sector and the fact that F2 is a non-trivial source of CP
violation in the three-flavor case.
Except from these sensitivities, which somewhat de-

pend on the specific model, the behavior for neutrinos and
antineutrinos, and so on, it may be of some interest to
obtain hints on how these reaches can be improved. In
order to study this aspect, we show the so-called “impact
factors” for the test of specific simulated models against
standard three-flavor neutrino oscillations in Fig. 4. These
impact factors test the relative impact of the measurement
errors on the neutrino oscillation parameters and system-
atics. In order to compute them, the non-standard discov-
ery limits are evaluated with all neutrino oscillation pa-
rameters marginalized over, matter density uncertainties
included, and systematics switched on (standard). In add-



M. Blennow et al.: Non-standard Hamiltonian effects on neutrino oscillations 1033

ition, in order to test a specific impact factor, one neutrino
oscillation parameter is fixed at one time (or systematics
is switched off), and the corresponding discovery reach for
the non-standard effect is compared to the discovery reach
including all uncertainties and systematics. The difference
between these two discovery reaches describes the impact
of a particular measurement error (or systematics), and
the relative impact in Fig. 5 quantifies what one needs to
optimize for in order to improve the discovery reach. For
example, for M̃3 (lower right pie), the error on ∆m

2
31 is the

main impact factor in our model, which needs to be im-
proved to increase the M̃3 discovery reach.
Again, a number of aspects from Sect. 3.2 can be ver-

ified. For F1 and F2 effects, systematics is the main im-
pact factor, since these flavor effects determine the overall
height of the appearance signal and are not introduced
with a specific spectral dependence (remember that we use
a conservative overall normalization error of 2.5%). For F3
effects, we have earlier determined the matter density un-
certainty as an important constraint. However, improving
the knowledge on ∆m231, θ13, or δCP does have a simi-
lar effect, since the extraction of the individual param-
eters becomes easier. For the mass effects, we encounter
a completely different behavior. Remember that we have
defined the mass effects with the same energy dependence
as the mass squared differences, which means that partic-
ularly M̃3 is easily mixed up with ∆m

2
31. On the other

hand, M̃1 and M̃2 are related to a flavor change in the ap-
pearance channel via the mixing matrix, i.e., the leptonic
mixing angle θ13. Therefore, it is not surprising that such
a flavor change can be interpreted as either a mixing or
a mass-changing effect. Compared to Sect. 3.2, there are
also a number of differences coming from the three-flavor
treatment (solar and CP effects) and the mixing in the
2–3-sector. These effects introduce additional correlations
with θ23 and δCP. However, these are also the reason why,

for example, M̃3 can be constrained at all from this experi-
ment alone [in the pure two-flavor case or without external
constraints on the solar parameters, it would be impossible
to distinguish between a non-vanishing M̃3 and a differ-
ent ∆m231 if the mass effects had the energy dependence
assumed in (32)].

5.4 Comparison to damping effects

In the context of the non-standard effect identification,
a more general question is the ability to distinguish Hamil-
tonian effects and effects on probability level. The proba-
bility level effects lead to damping of the neutrino oscilla-
tion probabilities (“damping effects”) and were studied in
detail in [1]. They may originate from decoherence, neu-
trino decay, or other physics mechanisms. In this section,
we address this identification in somewhat more detail in
a qualitative manner. A relatively new ingredient for this
identification is the use of the “silver” (νe→ ντ ) channel at
a neutrino factory [74, 75]. It has been noticed [28, 65, 66]
that the silver channel probability can be greatly enhanced
for non-standard Hamiltonian effects. This corresponds to
what we have found in Sect. 3.2, i.e., the silver channel,

which is similar to the “golden” (νe→ νµ) channel when
there are no non-standard effects, behaves as our two-flavor
limit in Sect. 3.2 for large energies.
In Fig. 5, we show the impact of different types of ef-

fects on the neutrino oscillation probabilities in the golden
channel Peµ, the disappearance channel Pµµ,

9 and the
silver channel Peτ (shown in columns) at a possible fu-
ture neutrino factory (relevant energy range shown). The
different rows correspond to scenarios with F1 (flavor-
changing without CP violation, Hamiltonian level), F3
(flavor-conserving, Hamiltonian level), decoherence, and
neutrino decay, respectively. The different model param-
eters for the different curves are given in the individual
plots, where the thick curves correspond to the standard
neutrino oscillation scenario. For a description of the de-
coherence and decay models, see [1]. In short, the decoher-
ence model corresponds to standard wave packet decoher-
ence, whereas the decay model assumes equal decay rates
for all mass eigenstates (which can, for instance, be mo-
tivated by a degenerate mass spectrum). Note that this
figure is shown for neutrinos only and that the comparison
between the neutrino and antineutrino behavior can pro-
vide information on the underlying physics as well. How-
ever, this behavior is model dependent.
Figure 5 is very useful to study the characteristics of

the different effects and to illustrate how the information
from different neutrino oscillation channels can be used to
disentangle them. First, it is important to note that it is
difficult to construct a damping effect without large im-
pact on the disappearance channel. Since the event rates
in this channel are very high, it is probably the first place
to look for non-standard physics. In addition, damping ef-
fects tend to suppress the golden and silver channel prob-
abilities around the oscillation peak, which can, depend-
ing on the model, be very different for Hamiltonian level
effects. However, as it can be read off from Fig. 5, Hamil-
tonian level effects produce, similar to sin2(2θ13), the larg-
est effect in the appearance channels.10 In particular, the
flavor-conserving effect F1 may enhance the silver proba-
bility as demonstrated in the two-flavor limit in Sect. 3.2.
Comparing all panels in Fig. 5, we expect that the com-
bination of all channels serves as a good model discrim-
inator because each of the shown models has a unique
signature if all these channels are combined. For example,
we have tested that adding a 5 kt OPERA-like emulsion
cloud chamber for the silver channel at the same base-
line as the golden channel improves the F1 discovery reach
by about 60% (for simulation details, see [76]) because
of the silver channel signature at large energies. There-

9 The probability Pµµ is actually the νµ survival probabil-
ity. However, this is the relevant probability when searching for
the νµ disappearance rather than the disappearance probabil-
ity 1−Pµµ.
10 The weak influence of the non-standard Hamiltonian level
effects on the disappearance probability 1−Pµµ is purely due
to the fact that (32) has been assumed for the non-standard
Hamiltonian, where we have assumed the νµ states to be un-
affected. However, as mentioned earlier, there are also stronger
bounds on any NSI involving νµ.
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Fig. 5. The impact of four different non-standard effects (in rows) on three different oscillation channels (in columns): golden
νe→ νµ, disappearance νµ→ νµ, and silver νe→ ντ . The different rows correspond to F1 (flavor-changing without CP violation,
Hamiltonian-level), F3 (flavor-conserving, Hamiltonian-level), decoherence, and neutrino decay. The different model parameters
for the different curves are given in the individual plots, where the thick curves correspond to the standard neutrino oscillation
scenario
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fore, we believe that this combination of different channels
in combination with precise oscillation parameter meas-
urements and spectral signatures can reveal non-standard
physics.

6 Summary and conclusions

For future long-baseline neutrino oscillation precision
measurements, such as neutrino factories, it will be an im-
portant question how to identify a non-standard effect.
While it is very likely that many theoretical models will fit
such a “new physics” discovery, the classification of models
corresponding to this discovery from a phenomenological
point of view will be very important for the planning of
the following generation of experiments. Hence, there is
strong interest in a top–down approach to non-standard
physics tests, since the impact of future measurements on
theory has to be assessed to promote the experiment. So
far, mainly the bottom–up approach has been used, which
is testing specific models in an experiment. Therefore, it
has been one of the main goals of this work to demonstrate
the identification and separation of individual phenomeno-
logical classes by generic arguments.
In summary, we have studied non-standard effects on

neutrino oscillations on the Hamiltonian level. We have
parameterized these effects in terms of the generators of
the Lie algebra, and we have introduced them in flavor
(such as coming from FCNC or NSI) and mass (such as
coming from MVN) bases. As a trivial fact, there is, in
principle, no mathematical difference between these ef-
fects if one allows for the most general form in each basis.
Given the detection of a general non-standard effect on
Hamiltonian level, it is therefore not possible to classify
it as a flavor or mass effect without further assumptions
or knowledge and, from an empirical point of view, the
classification is a matter of definition. Therefore, we have
defined “pure” effects as effects which are proportional to
specific individual generators. Those correspond to pure
flavor/mass conserving/violating effects, i.e., effects which
affect particular flavor or mass eigenstates. This definition
makes sense if one assumes that the underlying theoret-
ical model causes one dominating non-standard effect. It
is then the simplicity of the form in the respective ba-
sis which defines the effect to be of flavor or mass type.
Therefore, the concept of these pure effects allows for the
choice of the most “natural” class of models for further
testing, which is most appealing from the physics point of
view.
From the analytical point of view, we have studied the

effects in the two-flavor limit. We have derived the modi-
fied mass squared differences and mixing angles (parame-
ter mappings) as well as the modified resonance conditions
including standard matter effects. In addition, we have dis-
cussed the application of this two-flavor limit to experi-
ments, in particular, to the neutrino oscillation probability
Peµ. This probability can be described to a first approx-
imation by a two-flavor limit for large sin2(2θ13), where
the sin2(2θ13) term dominates the CP effects. In addition,

non-standard effects in the 1–3-sector have so far very poor
limits (such as εeτ ) and the driving parameter sin

2(2θ13)
is unknown, which means that there is room for confusion
between θ13 and non-standard effects (see, e.g., [26, 27]).
We have found that there are several generic features for
different types of effects. While any flavor-violating pure
effect can obviously change the transition probabilities, it
does not affect the resonance condition/energy. However,
a flavor-conserving pure effect changes the resonance con-
dition similar to matter effects and is highly correlated
with the matter density. In addition, it can suppress the
flavor transition for large energies similar to matter effects
– even in vacuum. Pure mass effects behave, in principle,
as rotations of the flavor effects by the mixing angles, i.e.,
a pure mass effect will be observed as a linear combina-
tion of flavor effects. However, for a pure mass conserving
effect, these flavor effects combine with special character-
istics, since the mass effect is similar to an (energy depen-
dent) change of the vacuum mass squared difference, i.e.,
it basically squeezes or stretches the oscillation pattern.
Since in quantum field theory any non-standard effect may
originate in the coherent (Hamiltonian effect) or incoher-
ent (“damping” effect) summation of amplitudes, we have
compared the non-standard Hamiltonian effects to the pre-
viously studied “damping” effects on probability level. We
have found that these two classes can be distinguished by
typical characteristics. Non-standard Hamiltonian effects
shift the oscillation pattern, while “damping” effects, in
general, do not. In principle, the different classes of non-
standard Hamiltonian effects can be identified by their
modification of oscillation amplitudes for large energies,
the shift of the matter resonance, the comparison of differ-
ent L/E-ranges, etc.
We have also studied some aspects of the three-flavor

generalization of general non-standard Hamiltonian effects
using perturbation theory as well as numeric calculations.
By assuming small non-standard Hamiltonian effects, we
have derived expressions for the effective matrix elements
using perturbation theory and observed how the confusion
theorem between θ13 and non-standard effects described
in [27] arises at the Hamiltonian level. Our numeric calcu-
lations show that non-standard effects can alter the deter-
mination of θ13 significantly at higher energies, while still
preserving a high accuracy at lower energies (cf. Fig. 2).
Eventually, we have demonstrated, by a numerical

example for a neutrino factory, that many of these fea-
tures can be found in a realistic experimental simula-
tion using three flavors and specific spectral (energy)
dependencies for the non-standard effects. For example,
while it is simple to distinguish a flavor-changing ef-
fect from flavor-conserving or mass effects in general,
mass effects are hard to establish as long as the neu-
trino oscillation parameters are not known from an inde-
pendent source (such as with a different matter density
for MVN). In addition, we have compared the obtain-
able discovery reaches for εeτ to the current limits, and
we have found at least an order of magnitude improve-
ment for large sin2(2θ13) and δCP = 0. We have also com-
pared the Hamiltonian level effects to damping effects and
found that they can be distinguished by their specific al-
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teration of the spectra in different neutrino oscillation
channels.
Since the past has told us that neutrinos are good for

surprises, the high-precision measurements at future neu-
trino oscillation experiments might as well reveal a de-
tection of “new physics” beyond the standard model (ex-
tended to include massive neutrinos). Therefore, we con-
clude that one should include general strategies to look
for non-standard effects in future neutrino oscillation ex-
periments, where we have followed a top–down approach:
instead of testing particular models (bottom–up), we have
assumed that some inconsistency will be found first. Sec-
ondly, one may want to classify this inconsistency to be
either a Hamiltonian or a probability level (“damping”) ef-
fect. Finally, individual models are identified which fit this
effect. Since we do not know exactly what we are looking
for, such an approachmight be a clever search strategy, and
it can be useful to promote an experiment as a discrimi-
nator among different classes of theoretical models. Future
studies should demonstrate how such an approach can be
most efficiently extended to three neutrino flavors, which
neutrino oscillation channels are most suitable, and what
the correlations with the existing fundamental neutrino os-
cillation parameters imply.
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Appendix A: General formalism for the
two-flavor scenario

Any two-flavor Hamiltonian can be written in the flavor
basis in the form

H =H ·σ , (A.1)

where H ∈ R3 and σ = (σ1, σ2, σ3) is the vector of the
three Pauli matrices (cf. the pictorial description of two-
flavor neutrino oscillations in [77]). For a time-independent
Hamiltonian, the time evolution operator is given by

S(t) = exp(−iHt) . (A.2)

Using the relation (A ·σ)2 = |A|2, one obtains

S(t) = 12 cos(|H|t)− i
H

|H|
sin(|H|t) , (A.3)

where 12 is the 2×2 unit matrix. This gives the two-flavor
neutrino oscillation probabilities of the form

Pαα = tr[P+S(t)] = 1− sin
2(2θ̃) sin2(kt) , (A.4)

Pαβ = tr[P−S(t)] = sin
2(2θ̃) sin2(kt) , (A.5)

where

P± =
1±σ3
2
, sin2(2θ̃) =

H21 +H
2
2

|H|2
,

k = |H|=

√√√√
3∑

i=1

H2i .

Here the Hi are the components of the Hamiltonian and θ̃
is the effective mixing angle.
In the standard two-flavor neutrino oscillation sce-

nario, H1 = sin(2θ)∆m
2/(4E), H2 = 0, and H3 = V/2−

cos(2θ)∆m2/(4E). In general, the resonance condition,
i.e., the condition for maximal effective mixing, is H3 = 0.
The Hamiltonian is represented as a vector in R3, the
third direction being the “flavor” eigendirection. The mix-
ing is given by the angle between the Hamiltonian vector
and the flavor eigendirection. The mixing is maximal, i.e.,
sin2(2θ̃) = 1, when the Hamiltonian vector is orthogonal to
the flavor eigendirection, which, as expected, is equivalent
to the resonance condition.
The flavor and mass bases, and thus, the flavor and

mass effects, are intimately associated with each other. For
the case of n= 2, i.e., for two neutrino flavors, any effective
contribution to the Hamiltonian can be written in either
the flavor or mass basis, i.e., as H ′ = F1ρ1+F2ρ2+F3ρ3
or H ′ =M1τ1+M2τ2+M3τ3. Since the effect must be the
same regardless of the basis it is expressed in, we obtain the
relations

⎧
⎪⎨

⎪⎩

F1 =M1 cos(2θ)−M3 sin(2θ) ,

F2 =M2
F3 =M1 sin(2θ)+M3 cos(2θ)

(A.6)

from (7), i.e., one obtains F1 and F3 by rotating M1 and
M3 by the angle −2θ and also one has F2 =M2. Thus, the
transformation in (A.6) relates flavor and mass effects and
shows that they are linear combinations of each other.

Appendix B: Non-standard effects
for large mixing

In this appendix, we concentrate on pure effects in the limit
of large mixing. When the mixing goes to maximal, we
have cos(2θ)→ 0. This means that the resonance condition
in (12) cannot be fulfilled for F3 = 0 (i.e., “matter reson-
ance”) at reasonably large energies.11 From (10), we can

11 Note that, in this appendix, we assume that matter effects
determine the resonance energy and the non-standard effects
are sub-leading contributions, which may shift the resonance
energy. Thus, we refer to the “matter resonance” as the reson-
ance condition in (12) for F3 = 0.
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easily observe that F1 and F2 will not modify sin
2(2θ̃) at

all in the absence of matter (and F3) effects (for example,
in Pµµ or a vacuum probability). Independent of matter ef-

fects, F3 can increase the suppression of sin
2(2θ̃) for large

energies. If the resonance condition in (12) is fulfilled, then

sin2(2θ̃) will be independent of F1 and F2. However, in
the presence of matter effects (such as for Pee in the limit
θ13→ 0), F1 and F2 can reduce the matter effect suppres-

sion of sin2(2θ̃) for large energies (cf. Fig. 6), i.e., they can
increase the effective mixing. Eventually, it is obvious from
(9) and (11) that the oscillation frequency is always in-
creased for positive Fi/∆m

2.
It can also be interesting (and quite illuminating) to

study how different pure (flavor or mass) effects affect the
effective neutrino mixing and oscillations. In Fig. 6, we plot
the effective mixing resulting from “pure” flavor and mass
effects. From this figure, some features become quite ap-
parent, e.g., some generic features are the shift in the reson-
ance energy for F3,M1, andM3, the non-zero high-energy
mixing for all effects but the flavor-conserving effect F3,

and the appearance of an antiresonance – where sin2(2θ̃)
goes to zero for some finite energy – for F1,M1, andM3.
The shift in the resonance energy is simply due to the

shift in the H3-component of the total effective Hamilto-
nian in the flavor basis (as was mentioned earlier, the res-
onance condition is H3 = 0). The fact that there is no shift
of the resonance condition for F1 and F2 was also discussed
earlier.
The reason why the effective high-energy mixing gener-

ally turns out to be non-zero is also quite easy to realize.
At high energies, the effective matter potential, which is
diagonal in flavor basis, dominates over the vacuumHamil-
tonian. As a result, the effective mixing is usually zero at
high energies. However, if there is a non-standard effect
with a corresponding effective addition to the Hamiltonian
which is non-diagonal and is either constant or increasing

Fig. 6. The effective mixing sin2(2θ̃) as
a function of 2V E/∆m2 and the ratio be-
tween the pure flavor (F1 and F3) or mass
(M1 and M3) effects and the matter po-
tential V . The horizontal lines correspond
to no non-standard effect and the mixing
along them is therefore the same in all
panels. The vacuum mixing is assumed to
be θ = 30◦, which is close to the present
value of the solar mixing angle θ12 (see,
e.g., [62]). See the main text for a more
detailed discussion

with energy, then the effective mixing at high energies will
be fully determined by the ratio of the non-standard effect
and the matter potential.
The antiresonance appears when H1 =H2 = 0 in the

flavor basis. Since H2 = 0 in the standard neutrino oscil-
lation scenario, it is apparent that this antiresonance will
occur for some value of F1. In addition, since M1 and M3
are linear combinations of F1 and F3, the antiresonance
will also appear forM1 andM3 effects, as can be seen from
the plots in Fig. 6.
There are also some interesting features that are spe-

cific for different effects. First, for F1 effects, we note that
the resonance condition is unchanged and that the mixing
is constant as a function of energy for F1/V =− tan(2θ)/2
(the reason for this is that the sum of the non-standard
Hamiltonian and the matter potential is proportional to
the vacuum Hamiltonian). Then, for flavor-conserving F3
effects, we note that these correspond to changes in the ef-
fective matter potential. For F3/V <−1/2, we obtain an
effective matter potential which is negative, resulting in
the disappearance of the resonance. Next, for M1 effects,
the mixing is constant whenM1/V =− sin(2θ)/2, in anal-
ogy with the F1 effects (again, the reason is that the sum of
the non-standard Hamiltonian and the matter potential is
proportional to the vacuum Hamiltonian). Also in analogy
with the F1 effects is that there is a value of 2V E/∆m

2,
where the mixing does not depend on the M1/V ratio.
However, in the case ofM1 effects, this is not the resonance
mixing, but rather a mixing of sin2(2θ̃) = cos2(2θ), which
appears at 2V E/∆m2 = 1/ cos(2θ). Finally, for mass con-
serving M3 effects, we note that the resonance disappears
when 2 cos(2θ)M3/V <−1.
The reason why the equivalent F2 and M2 effects are

not included is that these effects always lead to an increase
in the effective mixing angle for all energies, and thus, those
plots do not show as many interesting features as the plots
included. In addition, we note that if the non-standard ef-
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fects are energy dependent, then the effective mixing will
be given by the mixing along some non-constant function
of 2V E/∆m2 in Fig. 6.

Appendix C: Two-flavor limits of three-flavor
scenarios

In this appendix, we discuss subtleties with the definition
of the effective two-flavor scenarios introduced in Sect. 3.2.
Remember that the effective two-flavor neutrino oscillation
scenarios should be defined in terms of the effective two-
flavor sector in question. For example, in the limit when
∆m221→ 0, the effective two-flavor sector is spanned by νe
and νa = −s23νµ+ c23ντ . Thus, the limit can be consid-
ered as an exact pure two-flavor scenario only if the non-
standard effects preserve the two-flavor limit (i.e., no off-
diagonal terms mixing νe and νa with the remaining neu-
trino state νb = c23νµ+ s23ντ ). If the non-standard add-
ition to the Hamiltonian is given by

H ′αβ = εαβV , (C.1)

then the corresponding addition in the basis spanned by
{νe, νb, νa} is

H ′ =

V

⎛

⎝
εee c23εeµ− s23εeτ c23εeτ + s23εeµ

c23ε
∗
eµ− s23ε

∗
eτ A B

c23ε
∗
eτ + s23ε

∗
eµ B∗ C

⎞

⎠ ,

(C.2)

where

A= c223εµµ+ s
2
23εττ − s23c23(εµτ + ε

∗
µτ ) ,

B = c23εµτ − s
2
23ε
∗
µτ + s23c23(εµµ− εττ) ,

C = s223εµµ+ c
2
23εττ + s23c23(εµτ + ε

∗
µτ ) .

From this relation, we deduce that the limit will be a pure
two-flavor case if εαβ = 0 for all non-standard effects which
do not involve νe and c23εeµ− s23εeτ = 0 (which could be
implemented by, e.g., θ23 = 45

◦ and εeµ = εeτ ). In general,
some of the conclusions for the two-flavor case will there-
fore not apply to three flavors. We have, in the numerical
example in Sect. 5, demonstrated which of the conclusions
do hold. The case when θ13→ 0 is similar to the case de-
scribed above, with the exception that the effective two-
flavor sector is now spanned by νe and νb instead of νe and
νa. For the limit θ13→ 0 and ∆m232→ 0, there is no sub-
tlety and the two-flavor sector is spanned by νµ and ντ .
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